랜덤 포레스트(Random Forest) 기본 결정트리는 해당 데이터에 대해 맞춰서 분류를 진행한 것이기 때문에 과적합 현상이 자주 나타났다. 그에 따라 이를 개선하기 위해 2001년 앙상블 기법으로 고안된 것이 랜덤 포레스트이다. 훈련 과정에서 구성한 다수의 결정 트리들을 랜덤하게 학습시켜 분류 또는 회귀의 결과도출에 사용된다. 즉, 특정 특성을 선택하는 트리를 여러개 생성하여 이들을 기반으로 작업을 수행하는 것이다. 각각의 트리가 독립적으로 학습하기 때문에 학습과정을 병렬화할 수 있다. 일반적인 의사결정트리는 Tree Correlation이라고 하는 특정 feature 하나가 정답에 많은 영향을 주게되면 대부분의 결과치가 유사하게 나타나는 문제점이 있었다. 하지만 랜덤 포레스트에서는 그러한 문제를 해..